Tissue Segmentation by Machine Learning and Classical Methods on Multi-Modal X-ray Imaging

Youwan Mahé¹, Jiliang Liu¹, Takeshi Uenaka^{2,3}, Marius Wernig^{2,3}, Marina Eckermann¹, Peter Cloetens¹

¹ESRF - The European Synchrotron, Grenoble (France) ²Stanford University School of Medicine Dept. of Molecular Cellullar Physiology, Stanford, CA (USA) ³Institute for Stem Cell Biology and Regenerative Medicine, Stanford, CA (USA)

The European Synchrotron

youwan.mahe@grenoble-inp.org

AIM

Brain organoids are tissues cultured in-vitro from human stem cells. They recreate a 3 dimensional structure of the brain.

Organoids can be used in various research areas such as : neurodevelopmental studies, disease modeling or drug screening.

The instrumentation provided by ESRF beamlines ID16A and ID13 allows to image such structures Human iPS cells at the nanoscale.

Imaging modalities

XNH: 3D reconstructed volumes of unstained tissues by phasecontrast tomography (Beamline ID16A)

Voxel Size : 110x110x110 nm³ Exposure time : 200 ms N° of projections : 2000 Energy : 17 keV

KB mirro

The aim of this project is to develop machine learning workflows to segment the provided data for futher analysis.

Results : Unsupervised Methods

K-Means Clustering [1]

Thanks to the high coherence of the synchrotron beam, X-ray Nano Holotomography can map the electron density in a sample with a resolution at the nano scale.

This technique requires two reconstruction steps : 1) Phase retrieval 2) Tomographic reconstruction

SAXS : 2D map of X-Ray scattering intensity (Beamline ID13)

SAXS is valuable for investigating the size, shape and arrangement of component at the nanoscale

Results : Manual Processing

Chan-Vese Segmentation [2]

Cons: Not based on Al Very sensitive to image contrast

Pros: Low CPU/GPU Resource Demand No need for up/down scaling

highest when the result of the

Results : Supervised Methods

Tree A

Class 1 Class 3

Parrallel Random Forest [3]

Training data is labeled by hand. The model computes weights of -eature < Weigl the trees to match the training Feature < Weight₂ data

Class 1 Class 2 Feature < Weight₄ Class 2 $Feature < Weight_5$ Class 3

Class 2 This process uses human input to RF

Dataset

Tree B

Class 3 Class 2 Feature < Weight₄ Class 2

Majority voting

Class 1 Class 3

Feature < Weight₃

⁻eature < Weig

eature < Weigh

Class 1 Feature < Weight₄ Class 1 Class 3

Class 1 Class 3

Feature < Weight

Feature < Weight₆ Class

eature < Weigh

Acknowledgment	References			\bigcirc
We thank ESRF, in particular the beamline teams of ID16A and ID13 for the support during in-house beamtime.	 [1]F. Pedregosa <i>et al., Journal of Machine Learning Research</i>, vol. 12, no. 85, pp. 2825–2830, 2011. [2]T. Chan and L. Vese, Springer Berlin Heidelberg, 1999, pp. 141–151. doi: 10.1007/3-540-48236-9_13. [3]S. Berg <i>et al., Nature Methods</i>, Sep. 2019, doi: 10.1038/s41592-019-0582-9. [4]O. Ronneberger, P. Fischer, and T. Brox, 2015, doi: 10.48550/ARXIV.1505.04597. [5] T. Salditt, T. Aspelmeier, and S. Aeffner, De Gruyter, 2017.doi: 10.1515/9783110426694. [6] K. Joppe, JD. Nicolas, T. A. Grünewald, M. Eckermann, T. Salditt, and P. Lingor, Biomed. Opt. Express, vol. 11, no. 7, p. 3423, Jul. 2020, doi: 10.1364/BOE.389408. 	 [7] M. A. Lancaster and J. A. Knoblich, Nat Protoc, vol. 9, no. 10, pp. 2329–2340, Oct. 2014, doi: 10.1038/nprot.2014.158. [8] M. A. Lancaster and J. A. Knoblich, Science, vol. 345, no. 6194, p. 1247125, Jul. 2014, doi: 10.1126/science.1247125. [9] J. C. da Silva et al., Optica, vol. 4, no. 5, pp. 492–495, May 2017, doi: 10.1364/OPTICA.4.000492. [10] M. Eckermann et al., Proceedings of the National Academy of Sciences, vol. 118, no. 48, p. e2113835118, 2021, doi: 10.1073/pnas.2113835118. 	Université Grenoble Alpes	FRANCE