

Separation of light gases using soap-film membranes

Pablo Sanchez-Moreno Royer, Benoit Coasne, Elise Lorenceau

Laboratoire Interdisciplinaire de Physique, Saint-Martin D'Heres, France. Pablo.Sanchez-Moreno-Royer@etu.univ-grenoble-alpes.fr

Air filtration is a potential way to reduce greenhouse gas emissions Current air filters are: Soap-film membrane schematic representation **HOWEVER** -unrecyclable expensive -inefficient Consider soap-film membranes. They are: -recyclable -cheap -actually effective -possibly very efficient HOWEVER 1) Gas permeation through them is GOAL: "Observe" gas not understood permeation by 2) Gas permeation cannot be using *simulations* of the observed experimentally membrane

<u>Results</u>

<u>10000Pa</u>

#/nm^2	CO2	N2	O2
S	1.2866	Unavailable*	Unavailable*
SO SO	0.2740	0.1198	0.1398
1000000			

10000Pa #/nm^2 CO2 N2 O2 S 9.3479 Unavailable* 1.1693 S0 11.219 1.0117 0.6304

100000Pa		-	
#/nm^2	CO2	N2	02
S	84.3444	1.1513	7.2180
SO	85.8037	3.6031	18.3390

<u>Discussion</u>

No permeation was ever observed

There were too few gas molecules

for the excess gas adsorption's
uncertainty to be at a satisfying
value

*There were too few gas molecules for the excess gas adsorption to be calculated

OBSERVING PERMEATION WAS TO BE DONE:

- -visually
- -by measuring the excess gas adsorption

INTERMEDIATE STEPS:

- 1) Build a model of a thin-liquid film with and without surfactant monolayers
- 2) Simulate the entire system in Grand Canonical Monte Carlo (GCMC) to insert and remove gas molecules, varying the pressure and the type of gas molecule
- 3) Determine the excess gas adsorption once the number of gas molecules is stable
- 4) Simulate the entire system in Molecular Dynamics (MD) for 2.5 nanoseconds and observe

How to do it better

1) Build a model of a soap-film membrane in a hexagonal box

2) If more gas molecules are needed, tesselate the model in order to have more space:

3) Simulate the entire system in GCMC to insert and remove gas molecules, varying:

pressure - type of gas - number of types of gas

4) Determine the excess gas adsorption once the number of gas molecules is stable

5) Simulate the entire system in MD until permeation is visible