New Liposomal Formulations for Light-Controlled Drug Release

Núria Pujol-Solé, Tristan Le Clainche, Mans Broekgaarden
Team Cancer Targets and Experimental Therapeutics, Institute for Advanced Biosciences (IAB), France.

Liposomal drug delivery systems play a leading role in the treatment of cancer by reducing the toxicity profile of chemotherapeutics. Despite their success, there is an unanswered need to release chemotherapy specifically at the cancer site, thus increasing the efficiency of the treatment. Light-sensitive liposomes are the current approach proposed to improve controlled drug release.

1 Light-control drug release

2 Objective
To develop porphyrin-containing liposomes and its platinummetallated analog for light-controlled drug release.

3 Liposomes synthesis and characterization

- Synthesis Lipid film hydration method

Porphyrin concentration range: from 0 to $4 \mathrm{~mol} \%$

- Physicochemical characterization Size 110 to 120 nm

$$
\begin{array}{ll}
\text { (after extrusion) } & \mathrm{PDI}<0.2 \\
& \text { Z-potential }-0.5 \text { to }-3 \mathrm{mV}
\end{array}
$$

Optical characterization

Fluorescence spectra
porph. 1 molow 0.5 m M lipd conc.

Light irradiation

C Calcein release at 420 nm

A
L - CTPP, o. 5 mM lipid conc

B
HO^{*} generation at 420 nm
L- PtCTPP, 0.5 mM lipid conc.

5 Conclusions

- A comparison between liposomal CTPP and PtCTPP has been performed.
- Both types of photosensitizers produce ROS.
- Concentration dependence in ROS production.
- Achievement of drug release. Reduced efficiency of PtCTPP due to irradiation at 420 nm .

