

DOUBLE FUNCTIONALIZATION OF MICROBEADS

Clément Lassagne, Delphine Débarre¹, Oksana Kirichuk¹, Lionel Bureau¹, Ralph Richter² 1 Université Grenoble-Alpes, Grenoble, France 2 Laboratoire Interdisciplinaire de Physique (LIPhy), Grenoble, France 3 School of Biomedical Sciences and School of Physics and Astronomy, University of Leeds, Leeds, UK

Introduction

The functionalization of microbeads can be used as cell or virus mimetics for *in vitro* studies of cell/virus surface interactions.

Our group studies the biophysical interactions between blood cells and the blood vessel wall.

Therefore, the microbeads will be functionalized with the proteins CD44 and PSGL-1 that bind to the blood vessel wall.

Our goal: To control the surface

density of the two proteins separately and then perform a double functionalization

Principle:

A flat surface composed of specific binding sites in a perfect and laminar flow.

Two different populations with the anchor tag to attach, are in competition to bind onto the surface :

> Functional molecule with anchor (index 1)

The binding of the proteins is controlled by the diffusion leading to the following equation:

Competitive anchoring

C_i: concentration of the protein R_i: hydrodynamic radius $\Gamma_{1,sat}$: molar surface density of the protein at saturation

Why this method?

• Specific and strong interactions as biotin/Superavidin or zz/PSGL-1.

Université

Grenoble Alpes

- Less dependent of the number of beads in the solution than only putting the protein of interest.
- A theory that relates the mix in solution to the relative concentrations on the surface: \rightarrow quantitative

Surface with defined density of anchorage sites (Γ_{as})

 Γ_{as} : total molar surface density ($\Gamma_1 + \Gamma_2$)

With this equation, we can control the surface density of the protein on the beads by adjusting the relative concentrations.

 \rightarrow doable for more than one ligand (our objective).

Flow cytometry

Fluorescent antibodies targeting our protein of interest are used in order to measure quantitatively its surface density on the beads with a flow cytometer.

 \rightarrow The intensity we measure is proportional to the surface density of the protein on the beads

Functionalization process

Functionalization with CD44

FC Intensity (A.U.)

FC Intensity (A.U.)

1000 -

- Same shape between the
 - curves
 - Values between experiments are quite same

 \rightarrow Reasonably well reproducible

Double functionalization

- Functionalization at 10%
- Negligible non-specific interactions between the protein and the opposite antibody
- Sensibly same values between single and double functionalization

Functionalization with PSGL-1

447

Signal of CD44 Ab

402

\rightarrow The control of two different proteins on the beads is a SUCCESS

Conclusion

Controls

65.05

63

67.59

- Single functionalization of each protein permits good and reproducible values of calibration
- Double functionalization is well controlled

Publication

Kirichuk, O., Srimasorn, S., Zhang, X., Roberts, A. R., Coche-Guerente, L., Kwok, J. C., ... & Richter, R. P. (2023). Competitive specific anchorage of molecules onto surfaces: quantitative control of grafting densities and contamination by free anchors. *bioRxiv*, 2023-06.

